
Learning is the acquisition of new information, and 
memory is the ability to retain information in the long 
term for later reconstruction. In the brain, cells engaged 
in learning and memory processes undergo persistent 
changes to encode new information1,2. To consolidate 
new information into memory, neurons activated during 
learning require distinct profiles of gene expression3,4. 
Although the mechanisms that underlie the regulation 
of learning-​induced gene expression are not fully char-
acterized, researchers have turned to the epigenome as 
a signal-​integration platform through which neurons 
might integrate new information at the molecular level 
in the service of stable changes in cell function.

Epigenetic mechanisms are broadly defined as pro-
cesses that regulate gene expression through the alteration 
of chromatin structure without changing nucleotide base 
sequences5,6. Five major epigenetic mechanisms that cells 
utilize are histone modification, histone variant exchange, 
nucleotide modification, non-​coding RNA-​mediated reg-
ulation and chromatin remodelling7. With the exception of 
non-​coding RNAs, these mechanisms alter chromatin 
structure and function, adding a very complex layer of 
regulation to gene expression. These mechanisms are 
best known for their actions during cell differentiation 
and cell division8, including processes involved in the 
transgenerational passage of gene-​regulatory infor-
mation and the integration of environmental signals 
for the coordination of transcriptional responses in fully 
differentiated cells6.

In the last few decades, several epigenetic mecha-
nisms have been shown to regulate learning-​induced 
gene expression in postmitotic neurons and to estab-
lish persistent behavioural responses9–12. Exactly how 

these mechanisms persistently alter neuronal function 
to encode information into long-​term memory remains 
unclear. Discrete cell populations within particular brain 
regions, such as the hippocampus13,14, have been sug-
gested to form neuronal ensembles (known as engrams) 
to induce long-​lasting connections that are responsible 
for the formation of memories. Epigenetic mechanisms 
are hypothesized to have a role in the acquisition and 
maintenance of the engram, for example by modulating 
the encoding process through epigenetic priming and the 
persistence of cell function.

The signalling mechanisms involved in the coordi-
nated firing of neural circuits and synaptic plasticity are 
fairly well characterized, and the molecular events that 
occur dynamically at the synapse are highly complex. 
Various signalling cascades underlie the potentia-
tion of synaptic responses and the structural changes 
of activated neurons following learning15–18. Changes 
in synaptic strength arise owing to the redistribution 
of glutamatergic receptors and changes in the activ-
ity of adhesion proteins18–22. In addition, postsynaptic 
dendritic spines are structurally modified through the 
introduction and stabilization of new actin cytoskeletal 
elements23,24. The learning and memory field is begin-
ning to understand how these stable, structural changes 
at the synapse are regulated in response to experience 
and are necessary for the long-​term encoding of newly 
learned information.

The epigenetic mechanisms involved in memory, 
addiction and brain disorders have previously been 
comprehensively reviewed25–29. Nevertheless, a com-
mon and perhaps unifying aspect among these topics 
is the synapse. Thus, this Review highlights pioneering 
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studies that demonstrate how epigenetic mechanisms 
may be employed to encode information and regulate 
persistent changes at the synapse. We provide an over-
view of classic epigenetic mechanisms in the context of 
the synapse. We also discuss how epigenetic mechanisms 
become engaged by synaptic activity and how they may 
in turn lead to changes in synaptic structure and func-
tion. Last, we speculate on the conceptual avenues that 
could be taken to better understand how epigenetic 
mechanisms integrate experience into stable changes 
of synaptic function and ultimately cause long-​lasting 
behavioural changes.

Epigenetics in memory
Histone modifications, DNA methylation and nucleo
some remodelling (Fig. 1) are three of the best-​studied 
mechanisms that directly modulate chromatin structure 
to regulate the expression of genes related to learning 
and memory. The studies discussed below represent 
highlights of the initial work examining these epige-
netic mechanisms in memory formation. Evidence 

implicating histone variant exchange30–32 and higher-​
order chromatin looping33,34 in learning and memory 
is only just emerging; these mechanisms are discussed 
in Box  1. RNA modifications35,36 and non-​coding 
RNAs37–43 regulate gene expression without altering 
DNA sequences (and therefore fall under the broadest 
definition of epigenetic phenomena) but do not directly 
affect chromatin structure, and are therefore not dis-
cussed below. However, they may help to establish per-
sistent changes in neuronal function that are necessary 
for memory and other long-​lasting changes in behaviour.

Histone modifications. One of the main entry points 
into understanding epigenetic mechanisms that regulate 
memory processes came from investigation into the role 
of the transcription factor cAMP-​responsive element-​
binding protein 1 (CREB1). Transcription has long been 
known to be required for the formation of long-​term 
memories44, and pioneering work in Aplysia, Drosophila 
and mice demonstrated that CREB1 is crucial for mem-
ory formation (reviewed in refs45,46). In addition, the 
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Fig. 1 | Regulation of synaptic plasticity-​related gene expression through epigenetic mechanisms. Several 
epigenetic mechanisms have been identified as regulators of gene expression important for synaptic plasticity and 
memory formation. For instance, histone acetylation mediated by the activity of histone acetyltransferases, such as 
CREB-binding protein (CBP), can facilitate memory-​related gene expression. CBP is recruited by the transcription factor 
cAMP-​responsive element-​binding protein 1 (CREB1) and promotes a permissive transcription environment by adding 
acetyl groups onto the lysine tails of histones. By contrast, histone deacetylases (HDACs) remove acetyl groups from 
histone tails and act in concert with associated co-​repressor transcription factors to reduce gene expression (for example, 
transcriptional co-​repressor SIN3A). Gene expression can be repressed by the interaction with epigenetic enzymes, such 
as HDAC–repressor complexes or methyl-​CpG-binding protein 2 (MeCP2), which binds to methylated DNA. DNA 
methylation is controlled by several DNA-​modifying enzymes, including DNA methyltransferase 3A (DNMT3A) or 
DNMT3B and ten-​eleven translocation enzymes (TETs), which reportedly repress or permit gene expression depending on 
the region of DNA that is methylated. Nucleosome-​remodelling complexes, such as the neuronal BRG1-associated factor 
(nBAF) complex, interact with DNA and histones to potentially regulate chromatin structure and synapse-​related gene 
expression through insertion of histone variants, nucleosome sliding, nucleosome eviction and chromatin looping. 
Although RNA-​modifying enzymes do not directly affect chromatin structure, they do influence the rate of mRNA 
translation and the localization of RNAs, including at the synapse.
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finding that phosphorylation of CREB1 at serine 133 
induces recruitment of the CREB-​binding protein 
(CBP), a histone acetyltransferase (HAT)47, prompted the 
hypothesis that HAT activity may be important for reg-
ulating the gene expression required for formation of 
long-​term memory.

Indeed, early studies revealed that Cbp+/− mice —  
a model of Rubinstein–Taybi syndrome — exhibit deficits 
in long-​term memory that correlate with reductions in 
histone acetylation48–54. Later studies that dissociated the 
role of CBP in development from its role in the adult  
brain using conditional CBP-​mutant mice and pharmaco
logical inhibitors demonstrated that CBP and histone  
acetylation are directly involved in memory50–57.

Histone deacetylases (HDACs) have the opposite 
molecular effects to those of HATs, and both types 
of enzyme interact dynamically with one another. One of 
the first studies to examine the bidirectional regulation 
of histone acetylation and its effects on gene expression 
was of long-​term facilitation (LTF) in Aplysia11. Application 
of serotonin led to phosphorylation of CREB1 on the 

CEBP promoter and increased CBP recruitment for 
histone acetylation and LTF. By contrast, application of 
the inhibitory transmitter FMRFamide led to recruit-
ment of HDAC5, which reduced histone acetylation 
and displaced CREB1 at the CEBP promoter, blocking 
LTF. However, HDAC5 is not is considered to be inde-
pendently responsible for the deacetylase activity of 
histones; both HDAC5 and HDAC4 are believed to form 
complexes with other HDACs to regulate histone acetyl-
ation. In addition, their ability to regulate transcription 
has been shown to occur through their interactions with 
co-​repressing transcription factors58.

Nevertheless, HDAC inhibition ameliorated impair-
ments in long-​term potentiation (LTP) and deficits in 
long-​term memory in Cbp+/− mice50 and in mice express-
ing a HAT-​inactive form of CBP52, and many subse-
quent studies have confirmed the function of individual 
HDACs in memory formation59–65. For example, expres-
sion of a deacetylase-​inactive HDAC3 mutant in the dor-
sal hippocampus or the basal nucleus of the amygdala 
enhanced conditioned context fear, indicating that the 
deacetylase function of HDAC3 in these regions is crucial 
for negatively regulating the formation of context-​fear 
memory59. In addition, several studies have identified 
upstream mechanisms that regulate HDAC activity to 
influence memory processes; for example, phospho-
rylation of HDAC4 or HDAC5 regulates their nuclear–
cytoplasmic trafficking58,66,67, and S-​nitrosylation of 
HDAC2 leads to its dissociation from chromatin68. 
Notably, HATs and HDACs have many non-​histone 
substrates; for example, they are sometimes referred to 
as KATs and KDACs on the basis of their more generic 
lysine acetylase activity50. Their substrates also include 
proteins that regulate transcription and assist in chro-
matin remodelling, such as nuclear factor-​κB (NF-​κB) 
and oestrogen receptor-​α (ERα) — some of which are 
known to influence memory processes69–72. Proteins that 
bind to acetylated histone lysine tails, such as members 
of the bromodomain and extra-​terminal domain (BET) 
protein family, recruit additional protein complexes 
that are necessary for transcription and thus also have 
a role in memory formation73,74. Although we do not 
discuss them in detail here, bromodomain-​containing 
protein 4 (BRD4) regulates activity-​dependent expres-
sion of immediate-​early genes, and chronic or acute 
treatment with a BRD4 inhibitor impairs novel object 
recognition in mice74. Thus, histone acetylation creates 
a permissive transcriptional state for genes required 
for consolidation by: increasing the accessibility of 
plasticity-​related genes; regulating the activity of critical 
transcription factors through acetylation and interaction 
with acetylation-​regulating enzymes; and recruiting 
histone-acetylation-recognizing proteins and, in turn, 
additional transcription co-​activators.

Methylation of histones, primarily of their lysine 
and arginine residues, is another epigenetic mecha-
nism implicated in memory formation75–78. Histone 
methylation can activate or repress transcription, 
depending on the residue that is methylated and the 
degree of methylation7,79,80. Over the past decade, sev-
eral histone methyltransferases have been shown to 
be crucial for memory. For example, G9a is a histone 

Histone acetyltransferase
(HAT). An enzymes that 
catalyses the transfer of an 
acetyl group from acetyl-​CoA 
to the ε-​amino group of a 
histone lysine residue on  
a histone protein.

Rubinstein–Taybi syndrome
A condition characterized by 
moderate to severe intellectual 
disability, short stature, 
distinctive facial features and 
broad thumbs and first toes.  
It is often caused by CREBBP 
(also known as CBP) mutations.

Box 1 | Emerging aspects of neuronal chromatin regulation

Many aspects of the regulation of chromatin structure and modification of the 
epigenome are not yet fully understood. Although by no means new to the field 
of epigenetics, new work is shedding light on how histone variant exchange and 
higher-order chromosomal interactions regulate neuronal gene expression.

Histones are the basic proteins around which DNA is wrapped to form nucleosomes. 
There are five main families of histones: the core histones H2A, H2B, H3 and H4 and the 
linker histone H1. There also exist non-​allelic and distinct histone isoforms called 
histone variants. The best understood variants are those in the H2A and H3 families and 
include H2AZ and H3.3. An ATP-​dependent nucleosome-​remodelling complex replaces 
H2A with H2AZ, which is involved in establishing transcriptional competence and 
nucleosome stability and is localized around transcriptional start sites225. H2AZ 
(and two related hypervariants H2A.Z.1 and H2A.Z.2) can also be incorporated into the 
nucleosome by neuronal activity to affect regulation of plasticity-​related genes and 
the formation of fear memory30,31,226. H3.3 is involved in nucleosome assembly and 
usually replaces histones at active genes (reviewed elsewhere227). H3.3 accumulates in 
the brain from embryonic development to become the predominant H3 variant in the 
adult brain. Histones in neuronal chromatin seem to exhibit continuous turnover, as 
more than 30% of the total neuronal H3.3 pool is replaced in all mouse brain regions 
examined within a 4-week period32. Furthermore, neuronal activation (through various 
means) induced H3.3 expression, and knocking down H3.3 expression reduced the 
density of hippocampal dendritic spines and impaired object recognition memory and 
contextual fear memory. Together, these studies demonstrate a dynamic and pivotal 
role for histone variants in regulating the activity-​dependent gene expression required 
for memory processes. It will be interesting to determine whether the exchange 
of histone variants can affect transcription in a way that influences the effects of 
subsequent learning or that instils permanent memory.

On a much larger dimensional scale are higher-​order chromosomal interactions, 
which represent another level of gene regulation with emerging importance in 
neuroscience. One of the main approaches to studying how chromosomal regions that 
are separated by massive distances (tens to hundreds of kilobases) interact is called 
chromosomal conformation capture228. In this method, chromatin is crosslinked, 
isolated and then digested using specific restriction enzymes; the resulting fragments 
are subsequently ligated and the ligated fragments are analysed using real-​time PCR. 
The abundance of the ligated fragments correlates with the frequency of interactions 
between two regions. Chromosomal conformation capture has been used to 
demonstrate how enhancer elements loop to make contact with promoter regions and 
the assembly of transcriptional complexes to coordinate gene regulation229. It is also 
being used to define the 3D architecture, preferential organization and specific 
boundaries of the genome inside a nucleus230 — all of which will further influence how 
gene expression is regulated. Determining how these long-​range interactions and the 
3D architecture of the genome regulate neuronal gene expression, as recently 
investigated in several studies33,231,232, will be an important area of research.
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methyltransferase that forms a complex with G9a-​like 
protein (GLP) to catalyse the dimethylation of H3K9 
(H3K9me2). Its deletion from forebrain glutamatergic 
neurons using CamkII-​G9aflox mice resulted in abnormal 
locomotor activity as well as impairments in long-​term 
contextual and cue-​conditioned fear memory76. In addi-
tion, these animals showed an overall enhancement of 
gene expression, confirming the role of G9a as a tran-
scriptional repressor. The cognitive defects seen in the 
G9a-​knockout mice are suggested to be attributable 
to the aberrant effects on transcriptional homeostasis. 
For example, neuron-​specific deletion of G9a led to the 
expression of non-​neuronal genes in neurons in wide-
spread brain regions76. Thus, reduced G9a expression 
or activity could lead to memory impairments through 
defects in the regulation of multiple genes, including 
cell-​type-specific genes81–83.

Similar to histone acetylation, histone methylation 
can influence the recruitment of transcription factors 
and the activity of other epigenetic enzymes to regu-
late gene expression. Contextual fear training leads to 
increased H3K4 trimethylation (H3K4me3), a tran-
scriptionally permissive mark, at the Zif268 promoter 
in the hippocampus, and this increase is accompanied 
by increases in local DNA methylation and reductions 
in local methyl CpG-​binding protein 2 (MeCP2)–
DNA binding84. In addition, histone methylation can 
be influenced by mechanisms of histone acetylation: 
systemic infusion of an HDAC inhibitor reduces fear-​
conditioning-induced increases in H3K9me2 (which 
represses transcription) in the hippocampus84. The above 
examples demonstrate the high complexity of the effects 
of changes in histone methylation and methyltrans-
ferase function. Several other histone methyltransferase 
enzymes have been implicated in memory formation 
(for example, histone-​lysine N-​methyltransferase 2A 
(KMT2A)–KMT2D)85–89, as have other histone mod-
ifications (including phosphorylation, ubiquityla-
tion, sumoylation, ribosylation and citrullination), 
discussed elsewhere85,90.

DNA modification. DNA methylation is a type of DNA 
modification91–98 and mainly occurs symmetrically on 
CpG dinucleotides. Promoter methylation was origi-
nally considered to be a static mechanism to silence gene 
expression by recruiting methyl-​CpG-binding proteins 
such as MeCP2 and other associated transcription-​
repressing protein complexes. However, DNA methyl-
ation is now considered to have more complex effects 
on gene expression, not only at the promoter but also 
in the gene body. Moreover, although DNA methyla-
tion was initially considered only to negatively regulate 
memory processes, neuronal activity can induce expres-
sion of several enzymes that control DNA methylation. 
These include DNA methyltransferases (DNMTs) and 
DNA-​demethylating enzymes, such as growth arrest 
and DNA damage-​inducible protein-​β (GADD45B) and 
ten-eleven translocation enzymes (TETs)99–103.

During memory consolidation, de novo DNA meth-
ylation and demethylation occur within the CA1 region 
of the hippocampus and are enriched at both inter-
genic and intronic regions104. These activity-​induced 

changes in DNA methylation can correspond to the 
differential expression of genes that, according to gene 
ontology analysis, are functionally categorized under 
‘ion channels’ and ‘transcription regulation’104,105. From 
findings such as these, DNA methylation is suggested 
to regulate synaptic transmission and gene transcrip-
tion critical for memory formation. In support of this, 
pharmacological inhibition of DNMT activity blocks 
the induction of LTP91, and DNMT expression is 
upregulated following contextual fear conditioning106. 
Following a learning event, several memory-​forming 
genes are transiently demethylated, and memory-​
suppressing genes are transiently methylated to promote 
synaptic plasticity94,106. Intriguingly, DNA methylation 
seems to mediate stable changes in the expression of 
memory-​related genes94. For example, 30 days after 
fear conditioning training in rats, cortical expression of 
calcineurin, which negatively regulates memory forma-
tion, was reduced, and the gene encoding calcineurin 
was hypermethylated. Thus, epigenetic modifications 
can potentially induce stable changes in neuronal func-
tion that give rise to long-​lasting behavioural changes. 
Examining epigenome modifications along time frames 
extending beyond the typical 1–24 hours studied by 
most laboratories will be very important to understand 
how epigenetic mechanisms may maintain long-term 
memories.

The site of DNA methylation within a gene is also 
important for memory-​related gene expression. After 
reward learning, the expression of the immediate-​early 
genes Egr1 and Fos is increased in the ventral tegmental 
area and correlates with increases in DNA methylation 
specifically in the 3ʹ ends of their gene bodies, but not 
in the gene promoter107. Infusion of a DNMT inhibi-
tor into the ventral tegmental area during training was 
sufficient to impair the acquisition of reward-​related 
memories. This effect may be due to the regulation of 
intragenic DNA methylation, as in vitro application  
of a DNMT inhibitor reduced KCl-​induced hypermeth-
ylation of intragenic regions of the Egr1 and Fos genes 
and enhanced Egr1 and Fos expression. Although these 
results suggest that learning requires locus-​specific reg-
ulation of DNA methylation, exactly how DNA meth-
ylation influences gene expression during memory 
formation is still being defined.

As mentioned above, mechanisms of DNA and his-
tone modifications work in concert to regulate gene 
expression following learning; however, the mecha-
nisms are not fully characterized. For example, histone 
methylation (H3K4me3) and DNA hydroxymethyla-
tion (5-hydroxymethylcytosine (5hmC)) were found to  
co-​occur in intron regions of the immediate-​early gene 
Npas4 in CA1 of the hippocampus following the retrieval 
of a recent fear memory108. Knockdown of the histone 
methyltransferase MLL1 in CA1 abolished retrieval-​
induced increases in DNA 5hmC levels at the Npas4 
gene and prevented both fear memory and retrieval-​
induced increases in CA1 Npas4 mRNA108. The field of 
DNA methylation is still in its nascent stages, and future 
research will focus on understanding how gene-specific 
and locus-​specific DNA methylation affects memory 
processes104,105,109,110.

Histone deacetylases
(HDACs). Enzymes that remove 
acetyl groups from lysine 
residues on DNA. Acetyl 
groups help to neutralize the 
positive charge of histones 
and/or serve as binding sites 
for bromodomain-​containing 
proteins.

Long-​term facilitation
(LTF). A form of long-​term 
synaptic plasticity observed in 
Aplysia californica.

Ten-​eleven translocation 
enzymes
(TETs). Enzymes that convert 
5-methylcytosine (5mC) DNA 
marks to 5-hydroxymethyl
cytosine (5hmC), which is 
enriched within gene bodies, 
promoters and transcription-​
factor-binding regions and may 
influence gene expression.
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Nucleosome remodelling. Despite their known role 
in regulating gene expression and interactions with 
chromatin modifiers, the function of nucleosome-​
remodelling complexes (NRCs) in memory processing is 
somewhat understudied (Fig. 1). There are four families 
of NRCs (BRG1-associated factor (BAF), INO80, ISWI 
(imitation switch) and CHD (chromodomain helicase 
DNA-​binding)) that regulate chromatin compaction 
through active sliding, ejecting or restructuring of 
nucleosomes111. NRCs are typically large protein com-
plexes involving many protein subunits that probably 
dictate the specificity of their function for cell types and 
loci111. Studies in cultured Baf53b−/− hippocampal neu-
rons revealed that the ATP-​dependent BAF subunits are 
crucial for activity-​induced dendritic outgrowth112: these 
neurons showed impairments in activity-​dependent 
dendritic outgrowth and reduced expression of neur-
ite outgrowth-​related genes. Although RNAi-​mediated 
reduction of other neuronal BAF (nBAF) subunits sim-
ilarly affected activity-​dependent dendritic outgrowth, 
BAF53B is the only subunit that has been studied within 
memory formation in vivo113–115. The field must further 
investigate how the different NRC families interact and 
contribute to activity-​dependent gene expression 
and memory formation. Several mutations of NRC-​
encoding genes are linked to human intellectual disa-
bility disorders, including Coffin–Siris syndrome and 
autism spectrum disorder26, demonstrating the role of 
NRCs in cognitive processes.

Outstanding questions. In summary, there is little 
doubt that histone modifications, DNA methylation 
and NRCs have a role in learning and memory. The 
field has yet to answer many questions about the nature 
of their functions. First, are any epigenetic mecha-
nisms cell type-​specific, and if so, what are their conse-
quences? This may be especially relevant to NRCs, which 
exhibit cell-​type-specific subunit expression. Second, do 
enzymes that may have histone-​modifying functions in 
the nucleus have subcellular roles (for example, non-​
histone-modifying functions in the cytoplasm), and is 
there any crosstalk between these enzymes in different 
cellular compartments? Third, what are the patterns 
established by histone and DNA modifications, and how 
do they coordinate gene expression for specific cell func-
tions (that is, in line with the histone code hypothesis116)? 
Fourth, do histone modifications and other epigenomic 
modifications represent a molecular substrate of memory 
in a way that is relevant to the concept of the engram25?

Pushing the boundaries of memory
Epigenetic mechanisms have an important role in 
forming long-​term memories, altering the chromatin 
landscape in a way that leads to a more permissive tran-
scriptional environment for the expression of memory-​
promoting genes. In parallel to the identification of 
various epigenetic enzymes as regulators of memory 
processes55,95,106,117–119, researchers have asked whether 
these enzymes could be exploited to expand the type or 
amount of information normally acquired and/or stored 
after a learning event or to extend the time for which it 
is stored.

Targeting histone modifications. Several early stud-
ies demonstrated that histone acetylation could be 
observed during memory consolidation, a process 
during which gene expression is necessary for long-​
term memory formation75,120,121. One study demon-
strated that blocking histone deacetylation using the 
nonspecific HDAC inhibitor trichostatin A (TSA) 
changed the response to a single tetanus stimulation 
from a transcription-​independent form of LTP known 
as early-​phase LTP (E-LTP) to transcription-​dependent, 
late-​phase LTP (L-LTP), similar to that typically observed 
following multiple high-​frequency tetani122. This find-
ing raised the intriguing question of whether a similar 
phenomenon could be observed at the behavioural level 
when examining memory.

In an object recognition memory task, mice given the 
HDAC inhibitor sodium butyrate (NaB; intraperitone-
ally) after a single subthreshold training session that was 
normally insufficient to induce lasting memory exhib-
ited robust long-​term memory 24 hours later123. These 
effects seem to be persistent, as mice exhibited long-​term 
memory after 7 days, a time point at which even mice 
trained over a longer session will fail to show long-​
term memory123. These results were corroborated with 
additional techniques using genetic focal deletions and 
pharmacological inhibition of HDAC3 (refs117,124–126). 
Manipulations of HDAC3-dependent acetylation can 
affect the formation of not just contextual memory but 
also auditory memory. Rats treated with the HDAC3-
selective inhibitor RGFP966 not only exhibited more 
robust memory for the learned association between 
a sound and a water reward127 but also encoded addi-
tional, highly specific features of sounds associated 
with reward into memory128. These studies demonstrate 
that histone-​modification mechanisms may ultimately 
alter the kind of information encoded during memory 
consolidation. These mechanisms could potentially be 
manipulated to increase the amount and alter the types 
of information being consolidated, as well as to increase 
information persistence in memory.

Other studies have investigated the influence of 
targeting histone modifications on other memory pro-
cesses, including the extinction or reconsolidation of 
recent memories, as well as other memory types, such 
as remote memories. Pharmacological agents that target 
histone-​modifying enzymes to transform these mem-
ory processes might thus have therapeutic potential 
for individuals suffering from traumatic long-​term 
memories (that is, in post-​traumatic stress disorder)27. 
During normal fear extinction training, histone acetyl-
ation increases on H3 and H4 histones (for example, 
H3K14, H3K9 and H4K8) in the hippocampus129,130, 
lateral amygdala59,61 and infralimbic prefrontal cortex131. 
Studies involving systemic or region-​specific infusions 
of HDAC inhibitors revealed that histone acetylation can 
enhance the extinction of recent long-​term memories, 
including fear-​associated or drug-​associated memo-
ries129–134. Similar studies have examined the role of his-
tone acetylation in reconsolidation; however, the findings 
are conflicting, suggesting that the effects of manipulat-
ing reconsolidation by altering histone acetylation may 
be specific to the type of memory or learning process109.  

Nucleosome-​remodelling 
complexes
(NRCs). Large protein 
complexes that, through the 
activity of ATP-​dependent 
enzymes, alter histone–DNA 
interactions, disassemble or 
assemble nucleosomes, 
exchange histone variants or 
slide or reposition 
nucleosomes.

Histone code hypothesis
A hypothesis that posits that 
specific patterns of epigenetic 
modifications regulate specific 
gene expression networks for 
defined cell functions.

Early-​phase LTP
(E-​LTP). In this context, a form 
of potentiation that is 
dependent on covalent protein 
modifications, yet independent 
of gene expression. It is 
transient and short-​lived 
(generally on the order of tens 
of minutes in slices).

Late-​phase LTP
(L-​LTP). In this context, a form 
of potentiation that is 
dependent on transcription 
and translation. It is long-​
lasting (generally on the order 
of hours in slices and hours to 
days in vivo).

Extinction
Weakening of a conditioned 
response owing to long or 
repeated trials of memory 
retrieval in which the 
conditioned stimulus is 
removed. Extinction is 
hypothesized to result from the 
formation of new memories.

Reconsolidation
The re-​encoding and re-​
stabilization of a memory after 
reactivation, during which time 
the memory is hypothesized  
to be labile and vulnerable to 
manipulation.

Remote memories
Here, memories that were 
encoded a long time previously 
and that have since become 
independent of the 
hippocampus and dependent 
on cortical regions of the brain 
(through a process sometimes 
termed systems consolidation).
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For example, the retrieval or reactivation of contextual 
memory is reported to induce acetylation of H3 and H4 in 
the hippocampus and lateral amygdala. Moreover, HDAC 
inhibitors (such as TSA) promote, and HAT inhibitors 
impair57,61,135, the reconsolidation of fear conditioning, 
whereas HDAC inhibitors have no effect on inhibitory 
avoidance136. This difference in effect could be explained 
by the fact that these tasks depend on different neural sys-
tems; inhibitory avoidance tasks require an instrumental 
response whereas fear conditioning is a Pavlovian asso-
ciation. However, a more selective approach may have 
yielded a different result, as virus-​mediated reduction of 

HDAC3 activity in the dorsal striatum was sufficient to 
accelerate the formation of habit behaviour in instrumen-
tal learning tasks137. Thus, there is still much to discover 
regarding the role of HDACs in different brain regions 
and in the acquisition of different types of memory.

Remote memories are thought to be more resist-
ant than recent memories to manipulations (such as 
extinction paradigms) during reconsolidation after 
reactivation. However, administration of an HDAC2-
selective inhibitor during the reconsolidation phase 
after spaced or massed extinction of a conditioned fear 
memory attenuated remote memories68, by enhancing 
histone acetylation (specifically H3K9 or H3K14) and 
promoting the expression of neuroplasticity-​related 
genes and LTP. Moreover, in non-​treated animals, the 
recall of remote memory led to less histone acetylation 
than that observed in animals that recalled recently 
encoded memories. Thus, changes in histone acetyl-
ation may alter mechanisms of synaptic plasticity to 
make remote memories more labile and ‘recent-​like’. 
In line with this idea is the epigenetic hypothesis of age-​
related cognitive impairments and preclinical evidence 
demonstrating that manipulating histone acetylation 
enzymes can rescue disease-​related and age-​related 
memory impairments138. However, the exact epigenetic 
mechanisms underlying age-​related memory impair-
ments are unknown121,139,140; which target genes are 
affected and how acetylation of their histones enhances 
and induces the persistence of memory processes 
beyond the capacity of normal memory are yet to be 
understood. The current progress and limitations of 
HDAC inhibitors are discussed in Box 2.

Histone methylation has been implicated in the ini-
tial consolidation of memories77,85,86,89,90,141 and seems to 
be induced by and to regulate other memory processes 
(such as extinction) and memory reactivation90,108,141,142. 
The importance of histone methylation in age-​related 
and disease-​related cognitive impairments has also been 
explored. For example, H3K9me3 is increased in the hip-
pocampus of aged animals compared with young-​adult 
mice, and systemic administration of an inhibitor of the 
histone methyltransferase SUV39H1 improved object loca-
tion and fear conditioning memory performance in aged, 
but not young-​adult mice78. SUV39H1 inhibition in aged 
animals also restored levels of hippocampal H3K9me3, 
baseline levels of the synaptic glutamate receptor subunit 
GluR1 and the density of thin and stubby spines in the 
hippocampus to young adult levels. These initial findings 
support the hypothesis that dysregulated epigenetic mech-
anisms contribute to age-​related cognitive dysfunction. In 
addition, these results demonstrate the potential thera-
peutic value of targeting histone methylation for rescuing 
age-related cognitive impairments.

Targeting DNA methylation. DNA methylation reg-
ulates memory processes, including consolidation, 
extinction103,143,144 and reconsolidation61, as well as syn-
aptic processes such as synaptic scaling (Box 3), and 
could be targeted to enhance memory formation. For 
example, in mice, overexpression of DNMT3A2 before 
training, similar to HDAC inhibition, resulted in the 
long-​term memory of normally subthreshold training. 

Box 2 | Histone deacetylase inhibitors

Pharmacological histone deacetylase inhibitors (HDACis) have been used often to 
study the role of histone acetylation in learning and memory. There are two categories 
of HDACs: zinc-​dependent HDACs and NAD-​dependent sirtuins (SIRTs). All zinc-​
dependent HDACs are expressed in the brain, primarily by neurons, and are 
categorized on the basis of sequence similarity into class I (HDAC1–HDAC3 and 
HDAC8), classes IIa and IIb (HDAC4–HDAC7, HDAC9 and HDAC10) and class IV 
(HDAC11). Among SIRT1–SIRT7, only SIRT1–SIRT3 and SIRT5 have deacetylase activity. 
Several HDACis were developed for treating cancer, and several potent HDACis have 
shown promising preclinical effects in promoting the histone acetylation required for 
memory processes.

Initially, pan-​HDACis demonstrated the ability of HDACs to regulate learning-​
induced gene expression, long-​term potentiation and memory consolidation52,122 
before the roles of specific HDAC classes and isoforms were dissected. Of the class I 
HDACs, HDAC2 and HDAC3 strongly regulate learning and memory. Chronic 
treatment with SAHA (an inhibitor of class I and IIb HDACs) enhances fear conditioning 
memory in wild-​type mice but does not further enhance fear-​conditioned freezing in 
HDAC2-deficient mice118, suggesting that SAHA enhances fear memory through 
inhibition of HDAC2. Such findings have prompted efforts to develop HDAC2-selective 
inhibitors for improving memory233. Similarly, the most abundant class I HDAC in the 
brain, HDAC3, also negatively regulates long-​term memory59,117,124,125,234. Mice treated 
with the HDAC3-selective inhibitor RGFP966 showed enhanced long-​term object 
location memory and object recognition memory and increased H4K8 acetylation117,124. 
Chronic administration of HDAC-​isoform-selective inhibitors has, however, produced 
mixed results. For example, chronic homecage RGFP966 treatment did not alter 
dendritic spine density in the hippocampus or ameliorate memory impairments in a 
mouse model of Alzheimer disease235,236. Some evidence suggests that activation of 
SIRT1 deacetylase activity may reduce neurodegenerative processes: in CK-​p25 mice,  
a model of neurodegeneration, oral administration of the SIRT1 activator SRT3657 
recapitulated the neuroprotective effects of caloric restriction, delaying the onset of 
neuronal death237. Although the roles of different HDAC isoforms still need to be fully 
characterized, such studies indicate that HDACs are pivotal regulators of neural 
plasticity and behaviour. For more studies using HDACis, see refs238,239.

The (mostly) pro-​mnemonic effects of HDACis in animal models instilled high hopes 
for their therapeutic potential to ameliorate cognitive impairment. However, several 
points must be borne in mind when considering HDACis for possible therapeutic 
treatment. For example, although the inhibitors were developed against specific 
enzymes and tested for their in vitro activity on purified enzymes, they were often not 
tested against purified protein complexes. An inhibitor may thus disrupt protein–
protein interactions among HDACs, negating much of its claimed HDAC specificity67. 
These inhibitors also show low cell-​type specificity; although many inhibitors penetrate 
the blood–brain barrier (BBB), they do not exclusively act in particular brain regions or 
on specific gene sets in the brain. Nevertheless, systemic off-​target effects could be 
reduced by increasing the BBB permeability of these inhibitors. Soon, pharmacological 
agents will be able to be targeted to specific cell types.

Another important consideration is whether chronic and acute treatment may 
differentially affect memory processes. HDACis can induce differential effects depending 
on the behavioural context, therefore different treatments may need to be designed for 
specific cognitive impairments in different disease states. We are still in the early stages 
of understanding how to target HDACs and their complex roles in memory. However, 
given their dynamic roles and powerful effects, efforts dedicated to characterizing and 
manipulating HDAC mechanisms promise to be of therapeutic value.

Epigenetic hypothesis of 
age-​related cognitive 
impairments
A hypothesis proposing that 
the repression of chromatin 
and alterations in the 
expression of synapse-​related 
genes lead to cognitive 
impairment in ageing brains.
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In addition, inducible overexpression of DNMT3A2 in 
the hippocampus specifically before extinction training 
facilitated extinction145. Moreover, reducing endogenous 
DNMT3A2 activity in the mouse dorsal hippocampus 
using short hairpin RNAs abrogated extinction memo-
ries145. Endogenous DNMT3A2 also declines with age, 
and restoring DNMT3A2 levels in aged mice reduces 
age-​related memory impairments98. Thus, it will be cru-
cial to identify the loci targeted by DNMT3A2 that are 
relevant for hippocampus-​dependent memory to better 
understand its mechanism in the context of memory.

The above examples demonstrate the ability of several 
epigenetic enzymes to push the boundaries of memory 
processes. Although several target genes that are nec-
essary for these memory-​enhancing effects have been 
identified117,146, the precise mechanisms underlying their 
effects are unknown. Manipulations targeting epigenetic 
processes may potentially enhance memory by induc-
ing persistent changes in the structure and function 
of synapses.

Epigenetics and the synapse
Over the past decade, there has been an emphasis 
on identifying epigenetic modifiers and remodellers 
involved in memory processes and synaptic plasticity. 

Given their important effects, epigenetic mechanisms 
have more recently begun to be integrated into the 
framework of cellular theories of memory. To better 
incorporate epigenetics into this framework, research-
ers have begun to examine the role of epigenetics in 
molecular processes that regulate synaptic structure and 
function. Here, we review theories of synaptic tagging 
and mechanisms of synapse-​to-nucleus signalling in 
relation to memory formation and postulate the poten-
tial role that epigenetic mechanisms may have in these 
cellular processes. We highlight reports that begin to 
address how altering the chromatin landscape affects 
the expression and activity of synapse-​related proteins 
to affect synaptic plasticity and memory formation. 
Other epigenetic mechanisms that do not alter chroma-
tin structure but that have been implicated in memory 
processes are discussed in Box 4. Understanding the 
functional relationship between the epigenome and 
synaptic structure and function will be necessary to 
better understand fundamental aspects of memory and 
disorders associated with memory dysfunction.

Activity-​dependent changes that promote long-​lasting 
forms of synaptic strength — for example, LTP — are cru-
cial for encoding and maintaining information17,24. LTP is 
initiated by the activity of postsynaptic NMDA receptors 
(NMDARs) and calcium/calmodulin-​dependent pro-
tein kinase II (CAMKII). LTP is stabilized through the 
activation of cell surface receptors on a potentiated sub-
population of dendritic spines, which induces changes 
in actin polymerization23,147–151. These proteins include 
several cell adhesion proteins, such as integrins22,152, 
cadherins21,153–155 and neurexins18,156, which mediate the 
cell–cell and cell–extracellular matrix interactions that 
are crucial for synaptic plasticity and memory forma-
tion (Fig. 2). In addition, cadherin adhesion molecules 
form trans-​synaptic interactions and, following neuronal 
activity, become increasingly localized at the synaptic 
membrane and promote AMPA receptor (AMPAR) 
stabilization157. Signalling pathways downstream from 
these surface receptors, together with the activity of iono
tropic glutamate receptors such as AMPARs, promote the 
local disassembly of the cytoskeleton and trafficking of 
additional glutamate receptors to the postsynaptic den-
sity20,158–162. Cytoskeletal degradation is mediated, in part, 
by the protease calpain and the actin-​severing protein 
cofilin; these proteins open the surrounding actin net-
work and enable synaptic proteins, such as CAMKII, to 
alter dendritic spine activity.

The cytoskeleton of the dendritic spine head is 
rebuilt and expanded through the polymerization of 
filopodia-​actin (F-​actin). Signalling cascades initiated by 
calcium-​dependent GTPases, including the RHOA and 
PAK pathways, prevent depolymerization and drive the 
organization of actin filaments163. Cell adhesion mole-
cules facilitate activity-​dependent reorganization of actin 
filaments to prevent potentiated spines from returning to 
their pre-​potentiated state. For example, integrins help 
to link actin filament bundles to the plasma membrane 
and the extracellular matrix164. Newly synthesized pro-
teins are required to further reconstruct the cytoskeleton 
and thus to consolidate and maintain the potentiation of 
synapses23,147,159,165–171.

Box 3 | DNA modification and cell-​wide synaptic plasticity

Although DNA methylation enzymes have been implicated in learning and memory, the 
underlying cellular mechanisms remain fairly unclear. A new perspective was provided 
by recent studies identifying a relationship between DNA methylation and cell-​wide 
synaptic plasticity. In one study in cultured hippocampal neurons, treatment with the 
sodium channel tetradotoxin (TTX), which reduces synaptic activity and triggers global 
synaptic upscaling, increased the expression of ten-​eleven translocation enzyme 3 
(TET3)240, which oxidizes 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) 
to initiate DNA demethylation. Indeed, TET3 was crucial for homeostatic synaptic 
upscaling, a cell-​wide synaptic plasticity mechanism (distinct from synapse-​specific, 
Hebbian forms of plasticity)241. Short hairpin RNA-​mediated knockdown of TET3 
considerably increased the amplitude of miniature glutamatergic excitatory 
postsynaptic currents (mEPSCs) measured by whole-​cell patch clamp240. By contrast, 
neurons overexpressing TET3 exhibited smaller mEPSC amplitudes, suggesting that 
increases and decreases in the levels of TET3 bidirectionally affect excitatory synaptic 
transmission. Importantly, these effects on synaptic transmission were attributable to 
changes in DNA oxidation, but not to changes in oxidation-​independent functions that 
TET enzymes are known to have.

Similar results were reported in a study examining DNA methyltransferases (DNMTs)242. 
The small-​molecule DNMT competitive inhibitor RG108 drove synaptic upscaling in 
cultures of cortical pyramidal neurons, and knockdown of Dnmt1 and Dnmt3a blocked 
this effect. In contrast to the study in hippocampal neurons described above240, in which 
TTX increased the expression of TET3, but not TET1 or TET2, this study in cortical 
neurons242 showed that chronic TTX treatment increased the expression of TET1, but not 
TET3 (or DNMT1 or DNMT3). This discrepancy could be attributable to many factors but 
does suggest that cell-​type specific mechanisms may be in play. Together, these two 
studies, and earlier studies implicating methyl CpG-​binding protein 2 (MeCP2), which 
binds methylated DNA243–245, reveal a more causal relationship between DNA methylation 
mechanisms and synaptic scaling.

What these synaptic upscaling observations imply about normal learning and memory 
processes in the brain is not clear. Nevertheless, these results provide new and unusual 
insights into the regulation of cell-​wide synaptic plasticity by epigenetic mechanisms 
and potentially provide new insight into understanding how manipulations of histone 
modification or DNA methylation could drive long-​term memory for otherwise 
subthreshold learning events; promote formation of long-​term memories that persist 
beyond the normal lifespan of other memories; enable more neurons than normal to be 
engaged during learning; or gate the encoding of additional features during learning 
(observations discussed in the main text).
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A key open question is whether epigenetic mecha-
nisms, which can induce stable changes in cell function, 
initiate and maintain the learning-​induced potentiation 
of synapses through the molecular processes outlined 
above. Below, we probe the relationship between epi-
genetics and mechanisms affecting synaptic structure 
and function.

Epigenetic mechanisms in synaptic tagging. Long-​
lasting forms of synaptic plasticity are thought to require 
gene expression, protein synthesis and the formation of 
new synaptic connections172,173. However, exactly how 
changes in gene expression and protein synthesis give 
rise to synapse-​specific alterations is less clear. Frey and 
Morris hypothesized that synapses are ‘tagged’ follow-
ing stimulation and then capture newly synthesized gene 
products that are functionally relevant for plasticity174. 
This capture of nearby plasticity-​related proteins (PRPs) 
facilitates molecular interactions between neighbouring 
dendritic spines to transform short-​term plasticity into 
long-​term plasticity, which are mediated by E-​LTP and 
L-​LTP, respectively175–179.

Recent evidence suggests that epigenetic mecha-
nisms may promote long-​term plasticity through syn-
aptic tagging. In a recent study in aged animals, which 
show hippocampal L-​LTP deficits, the HDAC3 inhibitor 
RGFP966 re-​established synaptic tagging and capture 
and restored L-​LTP180. This study investigated whether 
HDAC3 affects synaptic tagging by using a two-​pathway 
‘weak-​before-strong’ experiment. In this experiment, 
two stimulating electrodes in the stratum radiatum of 

the hippocampus induce E-​LTP at one synaptic input 1 
(S1) of a neural pathway using a weak stimulation, and 
L-​LTP at another synaptic input (S2) of the same neural 
pathway using a stronger stimulation, while a recording 
electrode in between the inputs records from distal api-
cal dendrites. Unlike the stimulation at S1, the stronger 
stimulation at S2 synapses is hypothesized to tag synapses 
and to promote the expression of PRPs to stabilize poten-
tiation. The application of RGFP966 to these hippocam-
pal slices transformed E-​LTP at the weakly stimulated S1 
input into L-​LTP180. This finding suggests that HDAC3 
inhibition may promote the expression of PRPs that are 
typically expressed following the stronger stimulation 
as at S2. However, whether HDACs in aged or young 
neurons deacetylate transcription factors and/or  
co-​regulators, and/or histones, is currently unclear. 
Nevertheless, this work raises the possibility that epi-
genetic enzymes have a role in synaptic tagging and 
capture processes, potentially by regulating nuclear 
gene expression.

Notably, local translation in dendrites can be affected 
by RNA modifications, which represent another type of 
epigenetic mechanism181–183. Epigenetic mechanisms are 
therefore hypothesized to regulate local translation in 
dendrites to assist synaptic tagging and potentiation and 
to facilitate the transcription of PRP-​encoding mRNAs 
in the nucleus. Further experiments — in particular, 
looking at the effects of manipulating the localization 
of epigenetic enzymes in the cell — should shed light on 
these potential mechanisms.

From the synapse to the epigenome. With the induc-
tion of potentiation, synapses are hypothesized to induce 
signalling cascades to alter gene expression to enable 
synapse-​specific plasticity. One proposed mechanism for 
synapse-​to-nucleus signalling is the activity-​dependent 
nuclear translocation of synaptic proteins, which then 
alter transcription160,169,184–189. Consistent with this pro-
posal, synaptic stimulation induces the translocation 
of the CREB-​regulated transcriptional co-​activator 1  
(CRTC1) from dendrites to the nucleus, where it 
assists in the regulation of a set of CREB target genes190. 
However, few studies have examined how synaptic pro-
teins that shuttle to the nucleus may induce long-​lasting 
changes in chromatin structure186,190–192.

Activity-​induced synaptic proteins may influence 
epigenetic mechanisms. For example, expression of 
brain-​specific fibroblast growth factor 1B (FGF1B), 
which is required for CA3–CA1 LTP and hippocampus-​
dependent learning, depends on CRTC1 in the nucleus. 
Whereas weak memory training induces only transient 
expression of FGF1B (mRNA and protein), strong train-
ing leads to sustained FGF1B expression. Following 
(weak or strong) training, the HDAC3–nuclear recep-
tor co-​repressor (NCOR) complex is removed from the 
Fgf1b promoter, and phosphorylated CREB and CBP 
are recruited in its place to induce transient expression 
of Fgf1b (0.5–1 hour following training). Unlike weak 
training, however, strong training leads to subsequent 
CRTC1-mediated exchange of CBP for the HAT KAT5 
on the Fgf1b promoter, which in turn induces persistent 
expression of Fgf1b (2 hours following training)193. 

Box 4 | Additional epigenetic mechanisms in memory processes to explore

There is still much to be discovered regarding the finer details of the epigenetic 
mechanisms discussed in this article, and new epigenetic mechanisms involved in 
memory processes are still being identified.

For example, accumulating evidence suggests that several types of RNA species, 
including microRNAs (miRNAs) and long non-​coding RNAs (lncRNAs), can regulate 
synapse-​related gene expression and memory formation35,143,246–249, with their ability to 
regulate neural gene expression at least partly attributable to their epigenetic 
functions. For example, the expression of extra-​coding RNAs transcribed from DNA 
overlapping with the boundaries of the immediate-​early gene Fos is necessary for 
formation of fear memory37. Fos extra-​coding RNA molecules may interact with DNMTs 
and thus direct site-​specific DNA methylation and Fos gene regulation. In addition, 
although not yet seen in the context of memory processing, some evidence from 
embryonic mouse fibroblasts suggests that certain enhancer RNAs interact with 
CREB-binding protein (CBP) to stimulate histone acetylation and transcription250.

Moving forward, focus should be placed on understanding how gene regulators 
interact with one another and coordinate their influence on transcription. In one 
example of such efforts, deletion of Hdac3 (encoding histone deacetylase 3) from 
the hippocampus ameliorated impairments in both memory and synaptic plasticity 
that were caused by mutations of the gene encoding the BAF53B subunit of the 
BRG1-associated factor (BAF) nucleosome-​remodelling complex251. One possible 
explanation for this rescue is that HDAC3 deletion could have led to enhanced histone 
acetylation at memory-​related genes that may have promoted a permissive chromatin 
structure despite the absence of normal nucleosome remodelling. Alternatively, BAF53B 
disruption might have impaired memory by preventing histone-​acetyltransferase- 
dependent histone acetylation, which was restored by the deletion of HDAC3.

The complexity of gene regulation by epigenetic mechanisms such as these must be 
thoroughly investigated; these research pursuits will be critical to elucidating how cells 
integrate information to induce long-​lasting changes in behaviour and should point to 
novel therapeutic avenues for human disorders associated with mutations in genes 
encoding neuronal BAF complex subunits, including BAF53B.

Extra-​coding RNAs
A form of non-​coding, sense-​
strand RNA that is non-​
polyadenylated, encoded by a 
portion of DNA that overlaps 
the boundaries of another 
gene.

Enhancer RNAs
A form of non-​coding RNA 
transcribed from active 
enhancers. They can control 
mRNA transcription, 
challenging the idea that 
enhancers are merely sites of 
transcription factor assembly.
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This KAT5 substitution was required for hippocampal 
synaptic plasticity and memory enhancement.

CRTC1 is not the only synaptic protein with a 
potential role in regulating epigenetics. Following neu-
ronal stimulation, the synaptic protein afadin shut-
tles to the nucleus to promote the phosphorylation of 
H3S10, a histone modification that transforms con-
densed heterochromatin to provide a more transcrip-
tionally permissive, euchromatin state194,195, and this 
epigenetic mechanism is required for dendritic spine 
remodelling196.

These are some of the first findings to demonstrate 
that nuclear translocation of synaptic proteins may 
underlie epigenetic processes required for memory. 
Further research examining how information is trans-
ported from the synapse to the nucleus will be needed to 
understand how synaptic signals induce learning-​related 
gene expression.

Epigenetic regulation of the synapse: transmembrane 
proteins. Integrins are transmembrane adhesion recep-
tors that modulate dendritic morphology by mediating 
signals from the extracellular matrix and interacting with 
diffusible factors such as oestrogen and brain-​derived 
neurotrophic factor (BDNF)152,197,198. Integrin activation 
induces postsynaptic RHO GTPase signalling, thus 
activating LIM domain kinase (LIMK), which in turn 
deactivates the actin-​filament-severing cofilin, to regu-
late cytoskeleton dynamics22,152,199–202. The induction of 
this cytoskeleton-​regulating pathway promotes LTP via 
the insertion of glutamatergic receptors and the expan-
sion of the postsynaptic spine densities160,203–206. Although 
actin-​related proteins and their upstream effectors have 
been heavily implicated in synaptic plasticity, there is 
less information regarding the epigenetic regulation of 
the expression and activity of actin-​regulating proteins.

The nBAF subunit of the BAF53B NRC may have 
a role in the activation of actin-​regulating pathways 
and the stabilization of potentiated synapses following 
the induction of learning115. In the hippocampus of 
wild-​type mice, theta-​burst stimulation (TBS) induces 
LTP and alters synaptic morphology by affecting actin 
regulation: TBS promotes increases in spines contain-
ing phosphorylated p21-activated kinase (PAK) and 
downstream cofilin204. However, compared with their 
wild-​type counterparts, Baf53b+/− mice do not express 
TBS-​induced LTP, and TBS-​induced inactivation (that 
is, phosphorylation) of the actin-​severing protein cofilin 
in the postsynaptic density is reduced. Baf53b+/− mice 
also fail to show activity-​dependent increases in hippo
campal expression of genes involved in the postsynaptic 
cell membrane and cytoskeleton115. Thus, the struc-
tural and functional LTP deficits in Baf53b+/− mice may 
result from altered activity-​dependent-expression of 
synapse-​related proteins. In a follow-​up study, deficits 
in hippocampus-​dependent memory and hippocampal 
LTP in mice lacking the BAF53B subdomain 2 were res-
cued by overexpression of a phosphomimetic of cofi-
lin in the hippocampus114. Consistent with this work, 
overexpression of BAF53B within the lateral amygdala 
led to enhanced memory formation and thin-​spine 
density, whereas Baf53b knockdown within the lateral 

amygdala impaired fear memory formation113. Together, 
these studies demonstrate that NRCs have a key role in 
synaptic plasticity and memory, perhaps by regulating 
actin dynamics.

From the epigenome to the synapse: GluRs. The reor-
ganization of the cytoskeleton expands dendritic spine 
heads and is associated with the trafficking of additional 
AMPARs to the synapse. The trafficking of AMPARs 
and NMDAR-​dependent increases in Ca2+ lead to 
long-​lasting forms of LTP19,20,207–211. Epigenetic regula-
tion of GluR subunit expression occurs during critical 
periods of synaptic remodelling, including develop-
ment212, stress213,214 and following drug exposure215. 
Understanding how extracellular signals influence the 
epigenetic regulation of synaptic GluR expression in 
these contexts is necessary.

After exposure to stress, AMPARs are ubiquitylated 
for degradation, and recent evidence suggests that this 
ubiquitylation results from epigenetic changes214. In rats, 
repeated stress led to glucocorticoid-​receptor-dependent 
increases in expression of Hdac2 and increased occu-
pancy of HDAC2 on the G9a promoter, reducing G9a 
expression. Normally, G9a methylates the promoter 
of the gene encoding an E3 ubiquitin ligase, reducing 
its expression; thus, in stressed animals, upregulated 
HDAC2 reduces G9a expression and indirectly promotes 
the expression of the E3 ubiquitin ligase. In stressed rats, 
knockdown of Hdac2 prevented the increases in E3 and 
the degradation of AMPARs in the prefrontal cortex  
and ameliorated the stress-​induced disruption of 
AMPAR-​mediated plasticity216,217. These and other 
studies suggest that stress hormone signalling affects epi
genetic regulators (including neural-​restrictive silencer 
factor (NRSF) as well as HDAC2) that then persistently 
alter synaptic receptor expression, either directly or indi-
rectly213,218,219. The precise molecular mechanisms giving 
rise to the persistence of these effects on receptor expres-
sion, and whether these effects are established and/or 
maintained by long-​lasting epigenomic changes, remain 
to be understood.

From the epigenome to the synapse: presynaptic pro-
teins. Neurexins are presynaptic cell adhesion molecules 
that interact with various postsynaptic ligands to govern 
the connectivity of synaptic circuits (Fig. 2). Each of the 
thousands of expressed neurexin isoforms may show 
different specificities for various postsynaptic ligands 
(for example, different neuroligins) and thus have dif-
ferent effects156. For example, the inclusion of alterna-
tive splicing sequence 4 (SS4) in neurexin 1 interferes 
with postsynaptic AMPAR trafficking and represses 
long-​term synaptic plasticity220. Histone modifications 
can regulate exon splicing by affecting either the recruit-
ment of splice machinery or mechanisms of transcrip-
tional elongation221,222, although, to date, little evidence 
demonstrates a definitively causal role for epigenetic 
mechanisms in regulating mRNA splicing and isoform 
expression in memory.

Nevertheless, shedding new light on this topic, 
a recent study in the mouse dentate gyrus reported 
that neuronal activity drives the recruitment of the 

E3 ubiquitin ligase
A protein that facilitates the 
interaction of a target (or 
substrate) protein with an 
ubiquitin-​conjugating E2 
enzyme to enable the transfer 
of ubiquitin to the target 
protein.

Synaptophysin
A synaptic vesicle membrane 
protein that is ubiquitously 
expressed throughout the 
brain and has a role in  
synapse formation.

INTACT
(Isolation of nuclei tagged in 
specific cell types). A method 
to isolate nuclei tagged in 
specific cell types for further 
examination for specific 
proteins or RNAs or high-​
throughput sequencing.

TRAP
(Translating ribosome affinity 
purification). A ribosome-​
tagging method in which a 
fusion protein binds ribosomal 
proteins and immunoprecipita-
tion purification processes 
isolate biologically relevant 
mRNA transcripts.

Assay for transposase-​
accessible chromatin using 
sequencing
(ATAC-​seq). A method for 
mapping genome-​wide 
chromatin accessibility. A 
transposase inserts sequencing 
adaptors into accessible 
regions of chromatin, before 
adaptor-​ligated DNA 
fragments are sequenced.

Zinc-​finger proteins
(ZFPs). A large family of 
transcription factors with 
finger-​like DNA-​
sequence-specific domains. 
Fusion of a DNA-​binding 
domain specific for an 
18–20 bp genomic locus to a 
chromatin-​modifying enzyme 
enables targeted epigenetic 
regulation.
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HDAC2–p66a complex onto exon 22 of Nrxn1 to 
promote the inclusion of SS4 in neurexin 1 (ref.223). 
Subsequently, the histone methyltransferase SUV39H1 
preserves SS4 inclusion by trimethylating H3K9 on 

exon 22 of Nrxn1. NRXN1 that contained SS4 showed 
reduced binding affinity for postsynaptic neuroligin 1B 
(NLGN1B) and synaptophysin clustered on NLGN1B-​
expressing cells. However, these reductions in trans-​
synaptic interactions were not seen in neurons from 
Suv39h1+/− mice, supporting the hypothesis that mech-
anisms downstream from histone methylation regulate 
synapse formation. Moreover, in mice that underwent 
context-​specific fear conditioning followed by distrac-
tion training (that is, exposure to a neutral context fol-
lowing the initial recall test), knockdown of Suv39h1 in 
the dentate gyrus reduced freezing in the shock-​associ-
ated context compared with wild-​type controls. Thus, 
SUV39H1 activity is crucial for memory preservation, 
possibly by preventing synaptic rewiring that could inter-
fere with mechanisms of memory preservation. These 
results provide an example of how epigenetic mecha-
nisms can regulate gene expression, through splicing, to 
preserve memories through the stabilization of synaptic 
structure. This study also outlines a possible mechanism 
by which a histone modification at a specific locus is 
necessary for memory persistence. Future studies — for 
example, using CRISPR-​targeted approaches (Box 5) — 
will be needed to establish a causal relationship between 
the histone modification and splicing, and to deter-
mine whether splicing regulation is unique to memory 
persistence or occurs in other memory processes.

Conclusions and outstanding questions
As discussed above, epigenetic mechanisms are critical 
modulators of synaptic plasticity and memory. In turn, 
activity-​dependent synaptic changes engage epigenetic 
mechanisms. Not only are enzymes that modify the 
epigenome necessary for various memory processes, but 
pharmacologically or genetically altering the function of 
these enzymes dramatically changes the ability of neu-
rons to encode information. Altering epigenetic mecha-
nisms can affect the molecular and cellular mechanisms 
that establish the usual limits of synaptic plasticity, 
memory formation and memory persistence, and may 
perhaps even affect how many neurons are engaged in 
learning and memory. In turn, the relationship between 
the epigenome and the synapse is probably an important 
factor in these processes: synaptic proteins are reported 
to affect epigenetic mechanisms, and vice versa. Despite 
correlational demonstrations of these interactions, we 
are still lacking a fundamental understanding of how 
they regulate memory.

One clear question is whether there are direct and 
causal mechanisms of information transfer from the 
synapse to the epigenome that are necessary for stable 
changes in neuronal function. That is, are there bona fide 
synaptic proteins (or other molecules, such as RNA) that 
are locally translated or released from the synapse upon 
activity-​dependent stimulation that travel to the nucleus? 
In addition, do synaptic proteins that translocate to the 
nucleus directly participate in the epigenetic regulation 
of genes that stabilize changes in synaptic structure and 
function at the originally engaged synapses? To answer 
these questions, the coordinated cell-​type-specific 
and locus-​specific interactions between synaptic and 
epigenetic proteins must be examined (Box 5).

Fig. 2 | Synaptic plasticity and interactions between the epigenome and synapse.  
a | Dendritic spines are filopodia-​actin (F-​actin)-rich protrusions that receive information 
from neighbouring cells via several types of surface receptor (left). The strength of 
synaptic transmission correlates with the size of dendritic spines. Synapses undergo 
changes in actin polymerization to rapidly expand the dendritic spine head and 
translocate synaptic proteins (middle). Multiple signalling cascades are activated to 
facilitate different aspects of synaptic plasticity. First, the activation of the ionotropic 
NMDA receptor (NMDAR) initiates several calcium-​dependent signalling cascades 
important for regulation of synaptic protein activity and nuclear transcription. Second, 
the interaction of presynaptic neurexin and postsynaptic neuroligin cell adhesion 
molecules stabilizes transient synaptic contacts for synapse specification. Third, integrin 
receptors detect extracellular matrix (ECM) signals and promote the disassembly of 
cytoskeleton proteins. One downstream integrin mechanism is the activation of cofilin or 
other actin-​related proteins (ARPs), which leads to the depolymerization and 
reorganization of actin filaments. Fourth, AMPA receptors (AMPARs) are trafficked to the 
postsynaptic density (PSD). Together, these mechanisms rebuild the dendritic spine head, 
increase the concentration of glutamatergic receptors and regulate the translocation of 
synaptic proteins (right). b | Following neuronal stimulation, synaptic proteins can 
translocate to the nucleus or induce signalling cascades to promote transcription. 
Although the time points are not fully characterized, epigenetic regulation of 
transcription is proposed to regulate memory and synaptic plasticity. It is hypothesized 
that epigenetic mechanisms alter chromatin structure to permit transcription of genes 
crucial for immediate cellular responses (such as immediate-​early genes) and synaptic 
potentiation. Evidence suggests that synaptic proteins can translocate and interact with 
epigenetic modifiers to potentially also induce long-​lasting changes in gene regulation. 
Along these same lines, epigenetic mechanisms regulate the expression of synapse-​
related genes (for example, genes important for cytoskeleton polymerization) and thus 
influence synaptic structure and function. In order to fully understand how changes to the 
epigenome and synapse lead to long-​lasting changes in behaviour, it is critical to further 
explore how bidirectional interactions between the synapse and nucleus occur to 
persistently alter neuronal function. CBP, CREB-​binding protein; CREB, cAMP-​responsive 
element-​binding protein; CRTC1, CREB-​regulated transcriptional co-​activator 1; GluR , 
glutamate receptor ; nBAF, neuronal BRG1-associated factor.

◀

Box 5 | Tools to study epigenetic processes

The advent of recent genetic tools will assist in the pursuit of answering the open 
questions outlined in this article. For example, deep-​sequencing methods such as 
single-​cell RNA sequencing will be useful to analyse how subpopulations within cell 
types of the brain are uniquely altered during memory formation and updating252. 
Methods that allow for isolation or manipulation of specific cell types, such as INTACT 
(isolation of nuclei tagged in specific cell types) and TRAP (translating ribosome affinity 
purification), will also prove useful. The best implementation of these techniques would 
be to overlay sequencing results (for example, RNA sequencing with chromatin immu-
noprecipitation (ChIP) sequencing) to obtain a more accurate representation of 
changes in gene expression. Researchers can also turn to Hi-​C and ATAC-​seq 
(assay for transposase-​accessible chromatin using sequencing) to examine the long-​
term changes in chromatin structure that enable a memory to be sustained and 
recalled. To provide more causal evidence of how epigenetic mechanisms regulate 
cellular and behavioural plasticity, researchers could use tools such as zinc-​
finger proteins (ZFPs) and CRISPR–Cas9 to induce locus-​specific epigenetic 
modulations139,249,253,254. Furthermore, temporally specific manipulations such as 
optogenetic control of transcription factors and epigenetic enzymes will enable the 
control of gene expression within specific brain regions255.

To further advance this work, the field must use techniques that control locus-​specific 
epigenetic mechanisms in a temporally specific manner. Given the sophisticated 
techniques available, the role of epigenetics in cellular and behavioural functions can 
be examined simultaneously. For example, changes in gene expression can be induced 
by CRISPR–dCas9, and changes in the function of individual cells can be assessed using 
calcium imaging. Ultimately, understanding the epigenetic regulation of synaptic 
plasticity may reveal gene regulation mechanisms that, when disrupted, lead to 
abnormalities in cellular function that are observed in cognitive disorders.
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Another key open question is whether persistent 
changes in the epigenome at specific synaptic protein-​
encoding genes establish and/or maintain stable changes 
in synaptic structure and function. Some of the studies 
discussed above begin to answer this question; however, 
the field has just begun to investigate how epigenetic 
control of synapse-​related genes is regulated during 
memory processes. Moreover, we must examine how 
epigenetic regulation of established memory-​associated 
genes affects synaptic function. Relatedly, whether the 
epigenome represents a form of molecular memory for 

past experiences, and whether learning-​induced epi
genomic modifications directly participate in the encod-
ing of information that is required for the engram, are 
unknown224. Addressing questions such as these will 
provide insight into the dynamic relationship between 
the epigenome and synapse and thus will substantially 
advance our understanding of the molecular mecha-
nisms underlying the formation, persistence and limits 
of memory.
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